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Abstract. The variance of the pair correlation function. the triplet correlation function. 
g ( ” ( r . s ,  I ) ,  and the three-body contribution to the configurational entropy, S,, were studied 
as possible tools for distinguishing between three different models of amorphous silicon (a-Si) 
with (nearly) identical pair correlation functions. All of these quanoties were shown to be able 
10 make the distinction unequivocally. For practical reasons, short-mge S? is suggested as the 
best quantitative m u r e  of disorder, in terms of highworder correlations, For the first time. 
various projections of the three-body correlation function of a mmplieated amorphous matend 
are also shown. On the basis of the current study it is proposed that the most realistic structural 
model of a-Si is the reverse Monte Carlo At, starting From the well known Wooten model. 

1. Introduction 

If the atoms of disordered systems (liquids or glasses) interact via spherically non-symmetric 
pair forces the information provided by the measured spherically symmetric structure 
function or pair-correlation function is incomplete. In the case of systems consisting of 
one atomic species only, one needs three independent variables to describe the mutual 
positions and orientations of two panicles in order to calculate their interaction energy. 
Then the same number of independent variables is necessary to characterize the resulting 
structure at the level of pair correlations. This lack of information can be even more 
severe in the case of multicomponent or molecular systems. If one counts the number of 
independent variables ( N j )  necessary to define unequivocally the relative arrangements of 
two molecules the result is usually much bigger than the number of partial pair-correlation 
functions (N,,)  available from experimental data. Our present example, amorphous silicon, 
is a one-component material, where Ni > Np. For these systems it  is usually easy to 
reproduce the structure function by a reverse Monte Carlo (RMC) simulation [I]. Moreover, 
one has large freedom to introduce constraints based on chemical or physical evidence into 
the calculations. The resulting three-dimensional structures represent possible models of 
the real system. In such cases a detailed account must be given of how the simulation was 
performed in order to make this calculation verifiable. Although this approach seems fair. it 
suffers from serious deficiencies. First, if one shows a set of possible models for a system 
then it must be ensured that this set is complete, or at least as complete as possible, i.e. 
that it is impossible to build any other three-dimensional model with the same pair structure 
but significantly different higher-order structure. This requirement is mandatory, because 
no matter how cautious are our conclusions the reader may think of the present models as 
the probable structures of the system. 
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I t  is obvious that the most disordered model can be obtained from RMC calculations i f  
one applies only point particles with no further constraint. Th is  simulation wi l l  reproduce 
the structure function with as random a higher-order structure as possible, so this is the 
model with the highest configurational entropy. How can one find the other end, the most 
ordered structure, with the same pair structure? Evidently, this search requires a well defined 
measure that can quantify the differences between various models, based on the level of 
disorder they represent. Once such a measure has been established, one can search for 
specific minimization techniques providing the two extrema o f  this scale. Certainly we do 
not claim that any o f  the measures proposed in the following would be capable to select the 
real three-dimensional structure. However, knowing the most ordered and most disordered 
phases corresponding to a certain pair structure, all the possible models could be presented. 
This paper i s  devoted to the task of finding the most appropriate measure o f  structural 
orderldisorder. We use amorphous silicon as an example. 

Amorphous silicon (a-Si) was shown to have many structural models that are consistent 
with the experimental data [2,3]. I t  is because of this property that a-Si was chosen to be 
the model system of the present study: i t  would be o f  great interest if any of the models 
could be supported on a quantitative physical basis. I t  wi l l  also be attempted to name the 
model that most probably represents the real structure. 

The different structural models were produced by the reverse Monte Carlo method. 
The basic RMC algorithm has been described elsewhere in detail [1,4,51. In short, RMC 
moves particles around randomly in the simulation box in  order to reproduce a given set o f  
diffraction data within the experimental uncertainties. Instead of minimizing the potential 
energy, particle moves are accepted or rejected depending on whether the new position gives 
rise to an improved agreement between experimental and calculated structure functions. 
Thus the result o f  an RMC calculation i s  a (set of) panicle configuration(s) that i s  consistent 
with the experimental results. These configurations can later be analysed geometrically (see, 
for example. 141). 

2. Theory 

Structural models having identical pair correlation functions can only be distinguished by 
their higher-order correlations. The next member of the correlation function hierarchy i s  the 
triplet correlation function, gC3)(r .  s. f ) .  Foraone-component system containing structureless 
particles (spherically symmetric atoms) this function has three independent variables. A t  
present, computer capacities make i t  impossible to go beyond this level. (The quadruplet 
correlation function needs at least six independent variables.) In  fact, even the three-body 
correlations are difficult to handle. 

Recently, Baranyai and Evans developed a direct method for calculating the entropy 
o f  classical fluids at equilibrium [6]. The method is based on a systematic expansion o f  
the entropy in terms of the partial N-particle distribution functions given first by Green for 
the canonical ensemble [7] and subsequently by Nettleton and Green [8] and Ravechk 191 
for the grand canonical ensemble. Baranyai and Evans showed that the form of the grand 
canonical expansion i s  in fact a local expression and an ensemble-invariant form. To see the 
convergence o f  the method the same authors developed a method to calculate and integrate 
the entire three-particle correlation function [ 101. In disordered systems, where the range 
o f  the correlations i s  limited, the pair and triplet entropies, S, and S3. get no contributions 
from distant neighbours. The entropy contributions have an asymptotic value, which can 
quantify the disorder at the levels o f  pair and triplet correlations. The different structural 
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models from RMC calculations have nearly identical pair correlation functions so their pair 
entropy contributions are also nearly identical. At the level of triplet correlations, however, 
this is not the case. The different three-particle entropies quantitatively characterize the 
disorder in RMC configurations. This was shown in a preliminary communication [ 1 I ]  for 
the case of a-Si. 

We can find other measures for characterizing the structure of RMC configurations. If one 
does not want to go into the realm of higher-order correlations then the necessary information 
should somehow be deduced from lower-order correlations. As RMC simulations provide 
complete knowledge of the three-dimensional structure this task is clearly manageable. A 
very important requirement in this respect is that the advocated quantity should be easily 
computable. The pair correlation function can be unanimously given at every instant around 
each particle as a centre. In fact, the g”)(r )  of the system is the average of these individual 
functions. We can easily calculate the variance of these individual g ( r ) :  

where nr is the number bins of the g ( r )  histogram, and np is the number of particles, i.e. 
the number of individual pair correlation functions. 

If our system was a perfect one-component crystal then every particle would possess 
perfectly identical individual g ( r ) .  (With more components, or in more complicated cases, 
there were a small number of different individual g ( r ) ,  depending on the type and/or location 
of the central atom. At present we consider simpler systems only, as the principles are the 
same: only the number of individual g ( r )  would be greater. making the investigation less 
transparent.) Thus the variance would be zero. On the other hand, if our system were a 
perfect gas the variance would be a maximum. (Since, in practice. we are talking about 
histograms consisting of a finite number of bins rather than continuous functions, the actual 
value would be a function of the bin size used in  the calculation.) The same idea can be 
applied to any easily computable structural function. It is plausible to assume that the higher 
variance will always belong to the more disordered models. The only problem with this 
method is that the actual numerical value of the variance will be a function of the bin size. 
The bin size problem is related to the poor statistics of individual g ( r ) .  There may be cases 
when only a very few particles, or even none, will get into a bin. Therefore, comparison 
between different systems cannot be made trivially. The method is not absolute in this sense. 
This problem can only be circumvented i f  we partition the sample into regions where the 
number of centres is sufficiently large to decrease substantially the bin size dependence. 
However, if these regions are too large it is very difficult to detect reliably the difference 
in the variances. 

Another possibility is to approximate the entropy fluctuations. From thermodynam- 
ics [ 121 

where C, is the isobaric heat capacity. Since close to the triple point at least 95% of the 
excess entropy is given by the two-particle contribution, it is plausible to assume that a 
similar behaviour may also be experienced in terms of the fluctuations. In such a way, in 
principle we could approximately connect a simulated property of the model to a measurable 
property of a real system. 
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3. Calculational details: model systems 

Three structural models of a-Si were produced and were then analysed. Two of the models 
were identical to those introduced earlier [2,3]. The first is the result of an unconstrained 
RMC calculation, i.e. when no assumptions for the presence of tetrahedral bonding are 
imposed. This model will be denoted as U. The second model, is an RMC fit where all 
the atoms are required to have exactly four neighbours. The starting configuration in this 
case is a diamond lattice, and the calculation is carried out in r space (fitting g ( r )  of the U 
model). This model will be denoted as C .  

In the third RMC calculation every atom again has strictly four neighbours, but the 
starting configuration is a relaxed tetrahedral network known as the Wooten model [13]. 
The main attraction of the resulting structure is that among all the constrained models 
considered (also among those i n  [2,3]) it possesses the structure factor that is the closest to 
experimental results. Throughout the current study this model will be denoted as W. 

For the U and C models systems with 216 particles were used, whereas the W model 
contained 1728 atoms. The larger system size was applied because that calculation applied 
Q space information (the structure factor) as input function, since the properties of the 
W model had not been known before. (Comparing models of different sizes did not 
influence our conclusions, since the range of the investigations was always well within the 
smaller box.) All three models contained 100 independent-particle configurations. which 
were collected during the reverse Monte Carlo calculations after careful equilibration. The 
interval between two independent configurations was always at least N accepted moves 
(where N is the number of panicles). 
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Figure 1. Pair correlation functions Sz and S) for the t h y  models. Full curve: U; heavy full 
curve: Y; broken Curve: C. The spacing (bin size) is 0.2 A in each case. 

4. Results and discussion 

The pair correlation functions, as well as the two- and three-body contributions to the 
configurational entropy, are shown in figure 1. The RMC simulations were canied out using 
4 = 0.1 8, when evaluating (or fitting) g ( r ) .  In order to improve statistics at the three-body 
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level this spacing was doubled, so that every curve in figure 1 was calculated by using 
a different (dr = 02A)  binsize. This minor alteration (between the RMC procedure and 
the evaluation) could cause the small differences in terms of g ( r )  at the first peak, The 
discrepancies are small and concentrated mainly on one single point, so that they are not 
significant from the point of view of the main objective of this work. 
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Figure 1. Cosine distribution of bond mngles for the lhree models. Full curve: U: heavy full 
curve: W ;  broken CUNC: C. 

The usual means of revealing higher-order structural characteristics is the distribution 
of cosines of bond angles, B(cos 0) (see, for example, [Z]; it is a possible projection of the 
three-particle correlation function that is taken over all the possible angles formed by three 
atoms within the first coordination shell). Cosine distributions of bond angles for all three 
structural models of a-Si are shown in figure 2. Model U can clearly be separated from 
the other two models since the corresponding distribution has a large peak at around 60" 
( c o s 0  = 0.5). However, models C and W cannot be distinguished on the basis of their 
B(cos 0) functions, although the different ways they had been produced suggest that they 
are different. To make the distinction, more sophisticated tools are needed. 

4.1. The variance of g(*'(r) 

According to (1). Ag"' values were calculated for the three models, using two different bin 
sizes in each case. As an attempt to eliminate the high statistical uncertainties at low r ,  up 
to first minimum of the PCF, the variance of the 4nr2g(r) function was also calculated. A 
summary of the results is given in table 1. 

The first observation is that, independently of the type and spacing of the function, there 
is a clear tendency in each case towards increasing fluctuations, i.e. towards decreasing 
structural ordering in the order of models C, W, U .  This order fulfills commonsense 
expectations. It is therefore suggested that the variance of either of the above two functions 
can be used as a simple quantitative measure of disorder for distinguishing different shuctural 
models of a given material (corresponding to the same data set), provided that identical bin 
size is used. 

The multiplication by 4ar2  does not lead to an improved distinction between models, so 
only the quantity defined by (1) will be considered from now on. As is evident from table 1, 
the actual value of Ag") depends considerably on the bin size applied when calculating 
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the pair correlation function. As could be expected. using the larger bin size means a 
somewhat better (although not significantly better) distinction between different levels of 
disorder. Looking at the numbers reveals that there is a rather high level of basic noise in the 
fluctuations, which is responsible for about 90% of the values quoted. Compared with this 
noise, the differences between A&') of the models are quite low. This unfortunate feature 
makes the prospective use of Ag"' for characterizing structural disorder quantitatively 
somewhat inconvenient. although it was not possible to choose the parameters so that the 
above order of models would alter. The reliability of the method is also demonstrated by 
the values of uncertainties, which are well under 1% in all cases. 

Considering the relatively small bin size dependence of the differences of Ag(') it seems 
possible to use Ag(" not only for comparing structural models of a given material, but also 
for comparing structural disorder in different materials. For this purpose the bin size used 
for the different measurements should somehow be standardized. It could, for instance, 
be scaled to a well defined point of the PCF. This point could be the position of the first 
maximum (or minimum). If the number of bins up to this point are equal then the purely 
statistical noise should have identical effects for the different cases. However, this way of 
quantitative comparison is suggested only for similar systems. 

Knowing the values of Ag") for each of our models, the structures can be classified 
according to the extent of disorder. As was noted earlier, model U obviously seems the 
most disordered. whereas models W and C are more ordered, and model W is closer to 
model C than to model U 

Attempts were also made to compute ((AS)') values. as they could be directly related 
to a well defined physical property (see (2)). However, ((AS)') seemed to contain no 
additional information, and hence its use will not be further discussed here. 

4.2. The three-parricle correlation function, g")(r .  s, f )  

The function gC3)(r, s, I ) .  with r ,  s and f being the three position vectors of any particle 
triplet, is the full information that can be obtained on the correlation between the positions 
of three atoms. Thus it incorporates, for instance, the cosine distribution of bond angles 
(see figure 2). Since g")(r. s, f )  has three independent variables, only projections of it can 
be shown explicitly. Since this is the first time when the full gC3)(r, s. r) (or in short, g")) 
was calculated for a highly ordered system, several projections of it will be given in order 
to understand deeper structural differences or similarities. 

In theoretical works [ 14, 151 projections for the equilateral ( r  = s = t )  and the isosceles 
( r  = s. r )  configurations have been preferred, mostly because these are the ones that can 
be approximated, and also interpreted, more easily. For the sake of ease of comparison, 
isosceles projections are given in figure 3 for models U and C .  (The pattern of model 
W is in between, and somewhat closer to that of model C.) This projection reveals 
correlations within given coordination spheres. In this way it is the closest relative to 
the cosine distribution of bond angles: every peak corresponds to a well defined angle, and 
the ends of the angles are in the same coordination shell. 

The most apparent difference between the patterns is the presence (in model U) or the 
absence (in models C and W) of the peak at around f = r = s = 2.3 A, which corresponds 
to 'close-packed'-like triplets (equilateral triangles with sides of about 2.3 A, i.e. of about 
the first neighbour distance.) These triplets are not present in the constrained models, as 
can also be seen in figure 2. The higher proportion of tetrahedral angles in models C and 
U' are exhibited by the peak at r = s = 2.3A and f = 3.6.k. (This peak for model C is 
considerably higher than for model U ,  as shown by the number of contour lines.) 
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The isosceles (and equilateral) triplets ignore possible correlations between different 
coordination spheres. For investigating such correlations another type of projection was 
introduced. According to that, one distance (vector), which in our case is s, would be fixed, 
while the other two vectors would discover the entire subspace of ( r ,  I ) .  In practice, this can 
be done by choosing two particles, which are the correct distance from each other, fixed, 
whereas the third particle could be any of the remaining ones. The rest of the projections 
of g'3)(r, s. t )  shown in this work were made by using this sort of technique. 

Figure 4 compares gt3' projections of the above type for the three models at four 
different (fixed) s values. Note that the symmetric (to the diagonal) nature of the patterns is 
not extraordinary but necessary. It would be sufficient to show either the upper or the lower 
part, with respect to the diagonal, of the figures. What is striking at first glance is that the 
patterns for the different models differ sharply. This is particularly so at higher distances. It 
is also apparent that all models, particularly model C ,  possess a rather substantial medium- 
range ordering over the second coordination shell, These g(3) projections are the first tools 
that can reveal this extended ordering. The peaks that correspond to the appropriate vector 
triplets can be connected to angles that are characteristic to distorted (to different degrees) 
tetrahedral lattices. This is true for all the three models, although naturally to different 
extents. 

As a means of direct comparison of the models, g"' of model U was subtracted from 
the g") of the other two models. The resulting 'difference' g(3) are shown in figure 5 .  It is 
remarkable that not only g(3) itself, but also the difference functions, are highly structured. 
All the peaks but the ones at around r = f = 2.2A with s = 2.2-2.4A are positive. This 
finding supports the expectation that models W and C are both more structured than model 
U ,  particularly at higher distances. It should also be noted that shifting towards higher 
s distances g(3) of W - U seems to vanish. This suggests that the full g'3) of model W 
resembles more that of model U than that of model C. The longer-ranged almost crystalline- 
like structure of model C becomes intensely visible by these projections, which seem rather 
efficient in  revealing such behaviour. (It should be remembered that model C had indeed 
been produced in a way that much of the crystalline nature could be reserved. There was 
not a single (covalent) bond switching involved, for instance.) 

The full go) may not be the best tool for studying the extra correlations that are 
characteristic only to purely three-body effects since, at least among simple disordered 
systems like the Lennard-Jones fluid, many of the triplet correlations arise straightforwardly 
from the pair correlations [IO]. In order to separate the genuine three-body contributions we 
have calculated g"'(r, s, t )  normalized by the product of the corresponding three g'", i.e. 
by g'Z'(r)g(2)(S)g(Z)( t ) .  Results for the three models of a-Si, in the s range of 2.2-2.8A, 
are given by figure 6. 

The most important observation is that, although this reduced g(3) for model U is less 
structured at the smallest distances, generally the reduction did not give rise to the smearing 
out of the features of the full g(3). The reduced gC3', however, emphasizes some features 
that are not apparent in the full g(3). The most obvious of these is the disappearance of 
the 'hard-sphere'-like peak of model U at r = s = f = 2.3 A, that could therefore entirely 
be composed from single g(*). At the same time, peaks built up at r = I = 2.8A (writh 
s = 2.2-2.4A) in the reduced g(') of model U .  but particularly strongly, in that of model 
W. These peaks can be explained by knowing that g(2 ) ( r )  reaches its very low minimum 
value at about r = 2 . 8 -  3.OA. Dividing by this small value twice can cause the build-up of 
the peaks in question. In other respects, reduced g") of models U and W seem to possess 
similar degrees of structural ordering. This connects these two models more strongly then 
either of them to model C. 

' 
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On the other hand, concerning the reduced g(3' of model C. its resemblance to the 
corresponding full g(3) is striking: no additional feature can be seen on the reduced version. 
This is an extremely strong indication of the domination of higher-order (in this case three- 
body) correlations, which again connects model C with a crystalline-like structure. 

Comparing the usefulness of the full and reduced gc3), no unambiguous assessment can 
be made about which one is the better. They can reveal different aspects of the atomic 
structure that can be equally important. As the main difficulty is the calculation of the full 
g"), the normalization afterwards by the products of the appropriate g(:) being quick and 
easy, it is suggested that both should be applied for studying unknown structures. 

As is evident from the above, all kinds of projections, apart from the isosceles (and 
equilateral) projections, of g ( 3 ) ( r ,  s. t )  give detailed and novel insights of the microscopic 
structure of disordered materials. They all are able to make the difference between structural 
models unambiguously, indicating also the extent of ordering that can be found in the 
models. Unfortunately, it is not possible to give a single number, or a few numbers, based 
somehow on g(31, as the measure of structural ordering. For this reason, two-dimensional 
projections of gt3) in themselves do not satisfy the final aim of the current study. 

4.3. The three-body contribution to the configurational entropy, S, 

As was shown earlier [ lo ,  111, S, can be derived from g(3) and g(') quite readily. The 
comparison of S3 for the three models can be seen in figure 1. As was discussed in [ l  I ] ,  S3 
for model U behaves qualitatively differently from that of model C. As could be expected 
from the discussion in  previous sections, S3 of model W at short range (up to r = 3 . 0 k  the 
boundary of the first coordination shell) goes with S3 of model C. At higher distances the 
former does not follow with the dramatic fall of the latter, but behaves qualitatively similarly 
to S3 of model U .  These observations can fully be interpreted in terms of g'3). They are 
consistent with the crystalline-like peaks of go) of model C at higher distances, as well as 
with the presence (in model U )  or the lack (in models W and C) of the 'hard-sphere'-like 
peak at r = s = f = 2.2-2.4A. 

Note that the S3 curves differ at around the first minimum of g@), and later, from about 
the second peak of g(*), they are clearly separated. This makes S3 a perfect and relatively 
simple tool for applying it as a quantitative measure of ordering. The lower (more negative) 
is S,, the higher is the degree of order in the given model. Comparing the values of S3 at 
a specified r for different models can be simply that single number we have been looking 
for. The choice of the specified value is important but, since in this case the exact value of 
the configurational entropy is not looked for, it is important from a more technical point of 
view. According to this, it is advisable to chose an r value around which S3 curves of the 
models studied are flat. In the present study, this r value can be about r = 3.OA. 

4.4. The most probable structural model of amorphous silicon 

While producing model W it was discovered that, of all the constrained RMC structural 
models we have produced so far [2,3], the structure factor of model W best fitted the 
experimental S(Q) .  (The difference from S ( Q )  of model C is not clearly visible, but in 
terms of the sum of squared differences it is significant.) Furthermore, as seen from the 
study of go), model W does not possess the irrationally long-range structure, at least not 
at the level of three-body correlations, that so distinguished model C. Model W, as shown 
in figure 2, contains only tetrahedral angles, unlike model U.  Considering these properties, 
it is suggested that model W could be the most appropriate structural model of amorphous 
silicon produced so far. The key to the model probably lies in the generation of the Wooten 
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model [13], where the initial bond switches prevent the structure from later going back to 
the diamond lattice. 

It should be noted, however, that the above findings can only support what one would 
expect (in contrary to 'know' or 'measure') for amorphous silicon. 

5. Conclusions 

A number of tools applicable for distinguishing structures that are identical at the level of 
two-body correlations have been introduced and surveyed in detail. The most appropriate 
of them for measuring the degree of structural orderldisorder seems to be the three-body 
contribution to the configurational entropy, S,. If simpler means are preferred, then the 
variance of the pair correlation function, Ag('), is suggested for the same purpose, although 
it gives less resolved, and therefore more uncertain, information. 

The three-particle correlation function, g(')(r, s, t ) ,  proved to be an invaluable means of 
revealing details of the microscopic structure; gC3) was shown to easily separate models that 
looked identical at any level ofgeometrical analysis applied so far. Both the full and reduced 
g"' could clearly resolve the difference between the models, but a short interpretation of 
them is lacking. 

Model W ,  which is based on the Wooten model of amorphous silicon, is suggested to 
be the most appropriate structural model for a-Si. 
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